Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images

نویسندگان

چکیده

This study develops a deep learning (DL) model to classify the sea ice and open water from synthetic aperture radar (SAR) images. We use U-Net, well-known fully convolutional network (FCN) for pixel-level segmentation, as backbone. employ DL-based feature extracting model, ResNet-34, encoder of U-Net. To achieve high accuracy classifications, we integrate dual-attention mechanism into original U-Net improve representations, forming (DAU-Net). The SAR images are obtained Sentinel-1A. dual-polarized information incident angle inputs. used 15 acquired near Bering Sea train other three test model. Experiments show that DAU-Net could classification; can classification accuracy. Compared with improves intersection over union (IoU) by 7.48.% points, 0.96.% 0.83.% points on recently published DenseNet FCN , improvement IoU values 3.04.% 2.53.% 2.26.% respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICA-based classification of sea ice SAR images

We have applied Independent Component Analysis (ICA) to sea ice SAR data to produce vector bases describing the elementary textural features in sea ice and use the projections of sea ice SAR image data to the sets of these basis vectors for classifying the SAR data. In this paper we solely concentrate on the classification based on the texture.

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Sar Polarimetry for Sea Ice Classification

Polarimetric SAR images acquired at Cand L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne systems. For the test sites, complementary data about the characteristics of the ice cover and about the e...

متن کامل

Automated Ice-Water Classification Using Dual Polarization SAR Satellite Imagery

Mapping ice and open water in ocean bodies is important for numerous purposes including environmental analysis and ship navigation. The Canadian Ice Service (CIS) has stipulated a need for an automated ice-water discrimination algorithm using dual polarization images produced by RADARSAT2. Automated methods can provide mappings in larger volumes, with more consistency, and in finer resolutions ...

متن کامل

Model-Based Classification of Polarimetric SAR Sea Ice Data

This paper discusses the role of scattering decomposition models in the classification of polarimetric SAR sea ice data. The iterative Wishart classifier was applied to 3-frequency airborne SAR data acquired in the Beaufort Sea, and the scattering models were found to be helpful in interpreting the assigned classes. In addition to using the full data set, reduced data sets based on an eigenvect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters

سال: 2022

ISSN: ['1558-0571', '1545-598X']

DOI: https://doi.org/10.1109/lgrs.2021.3058049